一、什么是深度殘差學(xué)習(xí)
深度殘差學(xué)習(xí)(Deep Residual Learning)是由何凱明等人于2015年提出的一種深度神經(jīng)網(wǎng)絡(luò)模型,由于其在圖像識別領(lǐng)域取得的優(yōu)異性能,因而引起了廣泛的關(guān)注。該模型通過引入殘差塊(Residual Block)的思想實(shí)現(xiàn)了1000層以上的深度網(wǎng)絡(luò)。在深度殘差學(xué)習(xí)模型中,深度網(wǎng)絡(luò)中每一層都直接與后面的多個層相連,從而使每個層都能夠?qū)W習(xí)到更多的特征信息,提高網(wǎng)絡(luò)的性能。
二、深度殘差學(xué)習(xí)的原理
傳統(tǒng)的深度網(wǎng)絡(luò)出現(xiàn)了難以訓(xùn)練的問題。傳統(tǒng)的訓(xùn)練方法是使用梯度下降法進(jìn)行訓(xùn)練,每次訓(xùn)練只考慮到了相鄰的兩層,因此需要多次更新參數(shù)才能將信息從前面的層傳遞到后面的層。而在深度殘差網(wǎng)絡(luò)中,使用殘差塊的思想使每個層都可以學(xué)習(xí)到殘差(Residual)信息,從而將信息快速傳遞到后面的層,提高了網(wǎng)絡(luò)的訓(xùn)練效率。
殘差塊的結(jié)構(gòu)如下:
def Residual_Block(inputs, filters, kernel_size, strides):
x = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters, kernel_size=kernel_size, strides=1, padding='same')(x)
x = BatchNormalization()(x)
shortcut = Conv2D(filters, kernel_size=1, strides=strides, padding='same')(inputs)
shortcut = BatchNormalization()(shortcut)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
三、深度殘差學(xué)習(xí)的優(yōu)點(diǎn)
深度殘差學(xué)習(xí)的提出,使得深度網(wǎng)絡(luò)能夠達(dá)到更深的層數(shù),進(jìn)一步增強(qiáng)了網(wǎng)絡(luò)的學(xué)習(xí)能力,提高了網(wǎng)絡(luò)的性能。同時,深度殘差學(xué)習(xí)還具有以下幾個優(yōu)點(diǎn):
1、提高了網(wǎng)絡(luò)的訓(xùn)練效率。由于殘差塊的存在,網(wǎng)絡(luò)的信息可以更快地傳遞到后面的層,從而使得網(wǎng)絡(luò)的訓(xùn)練更加高效。
2、降低了網(wǎng)絡(luò)的過擬合風(fēng)險。在訓(xùn)練深度殘差網(wǎng)絡(luò)時,通過使用批量歸一化(Batch Normalization)等技術(shù),可以有效降低網(wǎng)絡(luò)的過擬合風(fēng)險。
3、提高了網(wǎng)絡(luò)的泛化能力。在深度殘差網(wǎng)絡(luò)中,每個層都可以直接與后面的多個層相連,從而使得網(wǎng)絡(luò)可以學(xué)習(xí)到更多的特征信息,提高了網(wǎng)絡(luò)的泛化能力。
四、深度殘差學(xué)習(xí)的應(yīng)用場景
深度殘差學(xué)習(xí)在圖像識別領(lǐng)域有著廣泛的應(yīng)用。例如,深度殘差網(wǎng)絡(luò)可以用于人臉識別、車輛識別、物體識別等方面。除此之外,深度殘差學(xué)習(xí)還可以用于語音識別、自然語言處理等領(lǐng)域。
五、深度殘差學(xué)習(xí)的實(shí)現(xiàn)示例
下面給出一個簡單的深度殘差網(wǎng)絡(luò)的實(shí)現(xiàn)示例:
from keras.layers import Input, Conv2D, BatchNormalization, Activation, Add, Flatten, Dense
from keras.models import Model
def Residual_Block(inputs, filters, kernel_size, strides):
x = Conv2D(filters, kernel_size=kernel_size, strides=strides, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Conv2D(filters, kernel_size=kernel_size, strides=1, padding='same')(x)
x = BatchNormalization()(x)
shortcut = Conv2D(filters, kernel_size=1, strides=strides, padding='same')(inputs)
shortcut = BatchNormalization()(shortcut)
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
input_shape = (224, 224, 3)
inputs = Input(shape=input_shape)
x = Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Residual_Block(x, filters=64, kernel_size=3, strides=1)
x = Residual_Block(x, filters=64, kernel_size=3, strides=1)
x = Residual_Block(x, filters=64, kernel_size=3, strides=1)
x = Residual_Block(x, filters=128, kernel_size=3, strides=2)
x = Residual_Block(x, filters=128, kernel_size=3, strides=1)
x = Residual_Block(x, filters=128, kernel_size=3, strides=1)
x = Residual_Block(x, filters=128, kernel_size=3, strides=1)
x = Residual_Block(x, filters=256, kernel_size=3, strides=2)
x = Residual_Block(x, filters=256, kernel_size=3, strides=1)
x = Residual_Block(x, filters=256, kernel_size=3, strides=1)
x = Residual_Block(x, filters=256, kernel_size=3, strides=1)
x = Residual_Block(x, filters=256, kernel_size=3, strides=1)
x = Residual_Block(x, filters=256, kernel_size=3, strides=1)
x = Residual_Block(x, filters=512, kernel_size=3, strides=2)
x = Residual_Block(x, filters=512, kernel_size=3, strides=1)
x = Residual_Block(x, filters=512, kernel_size=3, strides=1)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Flatten()(x)
x = Dense(1000, activation='softmax')(x)
resnet50 = Model(inputs, x)
resnet50.summary()